The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase.

نویسندگان

  • Kui Lei
  • Anjaruwee Nimnual
  • Wei-Xing Zong
  • Norman J Kennedy
  • Richard A Flavell
  • Craig B Thompson
  • Dafna Bar-Sagi
  • Roger J Davis
چکیده

Targeted gene disruption studies have established that the c-Jun NH(2)-terminal kinase (JNK) signaling pathway is required for stress-induced release of mitochondrial cytochrome c and apoptosis. Here we demonstrate that activated JNK is sufficient to induce rapid cytochrome c release and apoptosis. However, activated JNK fails to cause death in cells deficient of members of the Bax subfamily of proapoptotic Bcl2-related proteins. Furthermore, exposure to stress fails to activate Bax, cause cytochrome c release, and induce death in JNK-deficient cells. These data demonstrate that proapoptotic members of the Bax protein subfamily are essential for JNK-dependent apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis.

The c-Jun NH(2)-terminal kinase (JNK) is activated when cells are exposed to environmental stress, including UV radiation. Gene disruption studies demonstrate that JNK is essential for UV-stimulated apoptosis mediated by the mitochondrial pathway by a Bax/Bak-dependent mechanism. Here, we demonstrate that JNK phosphorylates two members of the BH3-only subgroup of Bcl2-related proteins (Bim and ...

متن کامل

JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins.

Targeted gene disruption studies have established that the c-Jun NH2-terminal kinase (JNK) is required for the stress-induced release of mitochondrial cytochrome c and apoptosis, and that the Bax subfamily of Bcl-2-related proteins is essential for JNK-dependent apoptosis. However, the mechanism by which JNK regulates Bax has remained unsolved. Here we demonstrate that activated JNK promotes Ba...

متن کامل

Morphine-induced apoptosis in PC12 cells: role of Bax and Bcl2

Introduction: It was reported that morphine could induce apoptosis in neurons. However, its specific mechanistic pathways remain elusive. The present study was undertaken to determine whether morphine could induce apoptosis in PC12 cells, a neuronal cell line, and the involvement of Bax and Bcl-2, as upstream factors of mitochondrial pathway. Methods: In an experimental study, the viabili...

متن کامل

Docetaxel-induced apoptosis of human melanoma is mediated by activation of c-Jun NH2-terminal kinase and inhibited by the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway.

PURPOSE Our studies have shown variable sensitivity of cultured melanoma cells to docetaxel. To better understand this response, we studied the role of signal transduction pathways in modulating docetaxel-induced melanoma killing. EXPERIMENTAL DESIGN Involvement of c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase, and ...

متن کامل

Neurobiology of Disease The c-Jun N-Terminal Protein Kinase Signaling Pathway Mediates Bax Activation and Subsequent Neuronal Apoptosis through Interaction with Bim after Transient Focal Cerebral Ischemia

The c-Jun N-terminal protein kinase (JNK) signaling pathway is implicated in neuronal apoptosis. The mechanism by which activated JNK induces neuronal apoptosis is strongly linked to mitochondrial apoptogenic proteins, although the molecular machinery downstream of JNK has not been precisely elucidated. Our study examined the relevance of proapoptotic Bcl-2 family members in JNKmediated apoptos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 22 13  شماره 

صفحات  -

تاریخ انتشار 2002